Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 5617, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618734

RESUMO

The unicellular green alga Haematococcus pluvialis accumulates large amounts of the red ketocarotenoid astaxanthin to protect against environmental stresses. Haematococcus cells that accumulate astaxanthin in the central part (green-red cyst cells) respond rapidly to intense light by distributing astaxanthin diffusively to the peripheral part of the cell within 10 min after irradiation. This response is reversible: when astaxanthin-diffused cells were placed in the dark, astaxanthin was redistributed to the center of the cell. Although Haematococcus possesses several pigments other that astaxanthin, the subcellular distribution and content of each pigment remain unknown. Here, we analyzed the subcellular dynamics and localization of major pigments such as astaxanthin, ß-carotene, lutein, and chlorophylls under light irradiation using time-lapse and label-free hyperspectral imaging analysis. Fluorescence microscopy and freeze-fracture transmission electron microscopy showed that, preceding/following exposure to light, astaxanthin colocalized with lipid droplets, which moved from the center to the periphery through pathways in a chloroplast. This study revealed that photoresponse dynamics differed between astaxanthin and other pigments (chlorophylls, lutein, and ß-carotene), and that only astaxanthin freely migrates from the center to the periphery of the cell through a large, spherical, cytoplasm-encapsulating chloroplast as a lipid droplet. We consider this to be the Haematococcus light-protection mechanism.


Assuntos
Carotenoides/fisiologia , Clorofíceas/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Gotículas Lipídicas/metabolismo , beta Caroteno/metabolismo , Clorofíceas/crescimento & desenvolvimento , Clorofíceas/efeitos da radiação , Luz , Fotossíntese , Xantofilas/metabolismo
2.
J Nanosci Nanotechnol ; 11(9): 8068-73, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22097531

RESUMO

The role of oxygen atoms in the growth of magnetron sputter-deposited ZnO films was studied in a deposition and post-deposition study in which the deposition of a several-nanometer-thick ZnO layer altered with an exposure to an O2/Ar mixed plasma, i.e., a layer-by-layer (LbL) technique. The film crystallization was promoted by suppressing the oxygen vacancy and interstitial defects by adjusting the exposure conditions of the O2/Ar plasma. These findings suggest that the chemical potential of the oxygen atom influences the film crystallization and the electronic state. The diffusion and effusion of oxygen atoms at the growing surface have an effect similar to that of thermal annealing, promoted film crystallization and the creation and the annihilation of oxygen- and zinc-related defects. The role of oxygen atoms reaching the growing film surface is discussed in terms of chemical annealing and a possible oxygen diffusion mechanism is proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...